13 research outputs found

    Effects of diamagnetic levitation on bacterial growth in liquid

    Get PDF
    Diamagnetic levitation is a technique that uses a strong, spatially-varying magnetic field to levitate diamagnetic materials, such as water and biological cells. This technique has the potential to simulate aspects of weightlessness, on the Earth. In common with all ground-based techniques to simulate weightlessness, however, there are effects introduced by diamagnetic levitation that are not present in space. Since there have been few studies that systematically investigate these differences, diamagnetic levitation is not yet being fully exploited. For the first time, we critically assess the effect of diamagnetic levitation on a bacterial culture in liquid. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 hours, in a series of experiments to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture. The speed of sedimentation of the bacterial cells to the bottom of the container is considerably reduced. Further experiments and microarray gene analysis show that the growth enhancement is due to greater oxygen availability in the magnetically levitated sample. We demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid, an effect not present in microgravity. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause the liquid to become unstable to convection when the consumption of oxygen by the bacteria generates an oxygen concentration gradient. We propose that this convection enhances oxygen availability by transporting oxygen around the sample. Since convection is absent in space, these results are of significant importance and timeliness to researchers considering using diamagnetic levitation to explore weightless effects on living organisms and a broad range of other topics in the physical and life sciences

    Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings

    Get PDF
    Background: Cell growth and cell proliferation are intimately linked in the presence of Earth’s gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. Results: We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. Conclusions:In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport

    Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly†

    Get PDF
    Understanding the effects of gravity on biological organisms is vital to the success of future space missions. Previous studies in Earth orbit have shown that the common fruitfly (Drosophila melanogaster) walks more quickly and more frequently in microgravity, compared with its motion on Earth. However, flight preparation procedures and forces endured on launch made it difficult to implement on the Earth's surface a control that exposed flies to the same sequence of major physical and environmental changes. To address the uncertainties concerning these behavioural anomalies, we have studied the walking paths of D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory. We used a strong magnetic field, produced by a superconducting solenoid, to induce a diamagnetic force on the flies that balanced the force of gravity. Simultaneously, two other groups of flies were exposed to a pseudo-hypergravity environment (2g*) and a normal gravity environment (1g*) within the spatially varying field. The flies had a larger mean speed in 0g* than in 1g*, and smaller in 2g*. The mean square distance travelled by the flies grew more rapidly with time in 0g* than in 1g*, and slower in 2g*. We observed no other clear effects of the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of diamagnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft, and identify the cause of the anomalous behaviour as the altered effective gravity

    Effect of diamagneic levitation on bacteria

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Bacillus thuringiensis conjugation in simulated microgravity

    No full text
    Abstract Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence. Key Words: Bacillus thuringiensis-Conjugation-Microgravity-pAW63. Astrobiology 9, 797-805

    Drosophila Behaviour & Gene expression in altered gravity conditions: Comparison between Space and ground facilities

    Get PDF
    Manuscript versionPrevious experiments in space (unmanned satellites, space shuttle and the International Space Station, ISS), have shown that adult Drosophila flies change their motile behaviour in microgravity. A consistent increase in motility in space was found in these experiments, but mature flies (two weeks old) showed less increase than recently hatched flies. In the case of relatively long exposure to microgravity, the aging of male flies measured upon return to Earth was increased, with flies dying earlier than the corresponding in-flight 1g centrifuge or ground controls. The older flies, which experienced a smaller increase in motility, did not show this acceleration in the aging process. More recently we have performed comparative experiments using ground simulation facilities. Preliminary experiments using a random positioning machine (RPM) indicate that the effects of this simulation approach on the behavior of Drosophi l a a r e o f s m a l l e r m a g n i t u d e t h a n t h e corresponding exposure to real microgravity. Further experiments are in progress to confirm this effect. However, when exposed to magnetic levitation, flies exposed to simulated weightlessness increased markedly their motile behavior compared with 1g controls both inside and outside the magnet. This altered gravity-related increase in motility was also less pronounced in more mature flies. This motility effect at the levitation position reproduces the results in real microgravity indicating the interest for space science of this simulation approach. Similar experiments are being performed in the Larger Diameter Centrifuge (LDC) located in ESTEC (the Netherlands) and indicate that 6g, 12g and 20g are key points in the hypergravity response in flies. Our experiments have shown that developmental processes from embryo to adult proceeded normally in the magnet, the RPM and the LDC. In terms of gene expression, preliminary results i n d i c a t e t h a t t h e a f f e c t e d s e t o f g e n e s u n d e r hypergravity responds in general in an opposite direction than that induced by the real or simulated microgravity exposure. The interest in conducting comparative parallel experiments in the complete spectrum of ground simulation methods is shown in the above studies and will be achieved in the near future.Peer reviewe

    Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability

    Get PDF
    Diamagnetic levitation is a technique that uses a strong, spatially-varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 hours, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is due to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timeliness to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena

    Germination of Arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation

    No full text
    5 páginas -- PAGS nros. 293-297Changes have been reported in the pattern of gene expression in Arabidopsis on exposure to microgravity. Plant cell growth and proliferation are functions that are potentially affected by such changes in gene expression. In the present investigation, the cell proliferation rate, the regulation of cell cycle progression and the rate of ribosome biogenesis (this latter taken to estimate cell growth) have been studied using morphometric markers or parameters evaluated by light and electron microscopy in real microgravity on the International Space Station (ISS) and in ground-based simulated microgravity, using the Random Positioning Machine and the Magnetic Levitation Instrument. Results showed enhanced cell proliferation but depleted cell growth in both real and simulated microgravity, indicating that the two processes are uncoupled, unlike the situation under normal gravity on Earth in which they are strictly co-ordinated events. It is concluded that microgravity is an important stress condition for plant cells compared to normal ground gravity conditionsPeer reviewe
    corecore